Статті
Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372
Переглянути
3 результатів
Результати пошуку
Документ Synergetic antimicrobial activity of a mixture of essential oils and Acinetobacter calcoaceticus IMV B-7241 surfactants synthesized in the presence of the eukaryotic inducer(2023) Pirog, Tatiana; Kliuchka, Igor; Kliuchka (Nykytyuk), LiliaThe research was devoted to study the synergetic antimicrobial effect and role in the destruction of biofilms under the action of a mixture of tea tree or cinnamon essential oil with surfactant Acinetobacter calcoaceticus IMV B-7241, synthesized in the presence of a yeast inducerДокумент Synergism of antimicrobial activity of antibiotics with biocides of natural origin(2024) Pirog, Tatiana; Kliuchka, IgorCurrently, antibiotic therapy remains the primary method for treating infectious diseases in humans. Nevertheless, its effectiveness is rapidly decreasing due to the widespread emergence of resistant pathogens, necessitating the exploration of new treatment options. One potential approach involves the use of antibiotics in combination with other natural compounds. The aim of the review was to summarize the literature data on the synergy of the antimicrobial action of combinations of antibiotics with various biocides against Gram-positive and Gram-negative pathogenic microorganisms. The analysis of literature data has shown that promising compounds for use in combinations with antibiotics include essential oils, other plant components, antimicrobial peptides (both natural and synthetic), and microbial surfactants. In the majority of studies, the researchers calculated the fractional inhibitory concentration index, confirming the synergistic antimicrobial activity of antibiotics and the mentioned compounds. The use of natural biocides in combination with commercial antibiotics, particularly against Gram-negative (including methicillin-resistant) Staphylococcus species and Gram-positive microorganisms (Escherichia coli, Pseudomonas aureginosa, Klebsiella pneumoniae, Proteus mirabilis, Acinetobacter baumannii), enabled to consider these mixtures not only as effective antimicrobial agents but as one of the ways to reduce the effective concentration of antibiotics as well. It should be noted that in the presented studies, the researchers only observed the synergy of antimicrobial activity between a combination of antibiotics and other biocides, without emphasizing the potential mechanisms of interaction between the components of the complex. This likely depended on various factors, including the qualitative composition of natural compounds. Therefore, it was important to continue research not only on the synergy of antimicrobial activity in compound mixtures but also on the underlying mechanisms of their interaction. This would provide insights to enhance their effectiveness in combating resistant microorganismsДокумент Influence of biological inductors on the synthesis and biological activity of microbial metabolites(2023) Pirog, Tatiana; Ivanov, MykytaThe increasing antibiotic resistance is a severe concern for humanity. Co-cultivation of microorganisms is a promising method for obtaining new secondary antimicrobial metabolites. An effective strategy for co-cultivation of microorganisms involves the usage of certain biological inductors. The aim of this review is to summarize existing scientific research in the literature related to the influence of physiologically different types of biological inductors on the synthesis and biological activity of microbial secondary metabolites. An analysis of the literature has shown that in such studies, either live or inactivated cells of the inductor are added to the culture medium at significantly lower concentrations compared to the producer cells of the final metabolites, or the supernatant (filtrate) after cultivation of a competitive microorganism is used as an inductor. According to the literature and our own experimental studies, the using inductors is an effective approach not only for intensifying the synthesis of bacteriocins, surfactants, and antibiotics, but also for increasing their biological activity. Additionally, it often leads to the production of novel antimicrobial compounds that are not typical for the producer. However, the mechanisms of effect of inductors on the synthesis of biologically active secondary metabolites require further research, as the literature suggests that their introduction into the cultivation medium of producer does not always lead to an intensification of the synthesis of the final product. Moreover, the biological activity of secondary metabolites depends on the cultivation conditions of the producer, including the presence of biological inductors in the culture medium. Therefore, it is essential to conduct further research on the interaction between producers and competitive microorganisms to regulate the biological activity of the synthesised metabolites. In addition, there is a necessity to search for more cost-effective substrates for the biosynthesis of secondary metabolites, optimize the composition of the culture medium and expand the range of both pro- and eukaryotic inductors