Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Exopolysaccharide Production and Peculiarities of C6-Metabolism in Acinetobacter sp. Grown on Carbohydrate Substrates
    (2002) Pirog, Tatiana; Kovalenko, M.; Kuzminska, Yu.
    An Acinetobacter sp. strain grown on carbohydrate substrates (mono- and disaccharides, molasses, starch) was shown to synthesize exopolysaccharides (EPS). Glucose catabolism proved to proceed via the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. Pyruvate entered the tricarboxylic acid cycle due to pyruvate dehydrogenase activity. Pyruvate carboxylation by pyruvate carboxylase was the anaplerotic reaction providing for the synthesis of intermediates for the constructive metabolism of Acinetobacter sp. grown on C6-substrates. The C6-metabolism in Acinetobacter sp. was limited by coenzyme A. Irrespective of the carbohydrate growth substrate (glucose, ethanol), the activities of the key enzymes of both C2- and C6-metabolism was high, except for the isocitrate lyase activity in glucose-grown bacteria. Isocitrate lyase activity was induced by C2-compounds (ethanol or acetate). After their addition to glucose-containing medium, both substrates were utilized simultaneously, and an increase was observed in the EPS synthesis, as well as in the EPS yield relative to biomass. The mechanisms responsible for enhancing the EPS synthesis in Acinetobacter sp. grown on a mixture of C2- and C6-substrates are discussed.
  • Ескіз
    Документ
    Regulation of Acetate Metabolism in a Strain of Acinetobacter sp. Growing on Ethanol
    (2003) Pirog, Tatiana; Kuzminska, Yu.
    Ethanol metabolism in Acinetobacter sp. is shown to be limited by the rate of acetate assimilation,a reaction catalyzed by acetyl-CoA synthetase (EC 6.2.1.1). Effects of ions (sodium, potassium, and magnesium), by-products of ethanol and acetaldehyde oxidation (NADH and NADPH), and pantothenic acid on this enzyme are studied (sodium, NADH, and NADPH inhibit acetyl-CoA synthetase; pantothenic acid, potassium, and magnesium act as enzyme activators). Conditions of culturing were developed under which ethanol, acetaldehyde, and acetate in Acinetobacter cells were oxidized at the same rates, producing a threefold increase in the activity of acetyl-CoA synthetase in the cell-free extract. The results of studies of acetyl-CoA synthetase regulation in a mutant strain of Acinetobacter sp., which is incapable of forming exopolysaccharides, provide a basis for refining the technology of ethapolan production involving the use of C2 substrates.