Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Simulation of hydrodynamic phenomena in valve feeders of adaptronic modules for dosing liquid products
    (2024) Gavva, Oleksandr; Kryvoplias-Volodina, Liudmyla; Dolomakin, Yuriy; Kulyk, Nataliya; Kokhan, Anton
    Rational geometric and hydrodynamic parameters of valve feeders of adaptron modules for dosing liquid food products in automatic packaging machines are determined. Materials and methods. The study of hydrodynamic phenomena based on the simulation modeling of the feeder operation with liquid media, the physical and mechanical characteristics of which are close to Newtonian liquids, was conducted. A feeder with a conical valve and purified drinking water were used in the study. The feeder throughput was 500 cm3/s; the internal diameter of the drain nozzle was 20 mm. Results and discussion. To ensure the continuous flow, minimum overall dimensions of the feeder, and the possibility of regulation by changing the throughput of the feeder nozzle according to a given law, the angle at the base of the cone should be within 50–60°, and the length of the saddle base 20–25 mm. During the movement of the liquid in the valve feeder, three negative factors affecting the parallel laminar movement of the liquid were found: (a)reverse movement of the liquid when it comes into contact with the surface of the base of the valve cone; (b) turbulence cells at the entrance of the liquid into the valve channel, and (c) the tubular form of the liquid flow in the nozzle. These negative factors can be eliminated by using a ball-conical valve with a truncated top. To eliminate turbulence cells in the valve feeder, counter-current movement of liquid, and tubular flow of liquid in the nozzle, it was proposed to make the valve in the form of a conical-spherical shape with a cut-off cone top, and also to extend the inner surface of the seat to the inner surface of the measuring cylinder of the feeder. Under such conditions, a parallel flow of liquid is ensured, which contributes to the accuracy of dose formation and the duration of product storage. Conclusions. The design of the valve in the form of a conically spherical figure with a cut-off cone top according to the provided recommendations allows eliminating the centers of turbulence in the movement of liquid products in the valve feeder.