Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Synthesis of precision dosing systems for liquid products based on electropneumatic complexes
    (2021) Gavva, Oleksandr M.; Kryvoplias-Volodina, Liudmyla; Blazhenko, Serhii; Tokarchuk, Serhii; Derenivska, Anastasiia
    This paper reports the construction of a mathe-matical model for the process of dosing liquid foods (non-carbonated drinking water). The model takes into consideration the differential equations of chang-es in the kinematic parameters of the liquid in a dos-ing device's channels and the corresponding accept-ed initial and boundary conditions of the process. The boundary conditions account for the influence of soft-ware-defined airlift dosing modes using the driver and the geometry of the product pipeline. The current's value measured in mA (with an accuracy of 0.001 mA) relative to the standard scale Imin is Imax=4...20 mA.Individual stages of the dosing process were ana-lytically described, followed by the analysis of sepa-rate stages and accepted assumptions.The accuracy achieved when testing the experi-mental sample of the dispenser, with the repetition of the dose displacement process, ranged between 0.35 % and 0.8 %. The reported results are related to the established dosage weight of 50 ml when changing the initial level of liquid in the tank of the dosing feeder by 10 mm.An experimental bench has been proposed for investigating the functional mechatronic dosing mod-ule under the software-defined modes to form and discharge a dose of the product. The bench operates based on proportional feedback elements (4–20 mA) for step and sinusoidal pressure control laws in the dosing device.The control model with working dosing modes has been substantiated. The control models built are based on proportional elements and feedback.During the physical and mathematical modeling, the influence of individual parameters on the accuracy of the product dose formation was determined; ways to ensure the necessary distribution of compressed air pressure, subject to the specified productivity of the dosing feeder, were defined. The study results make it possible to improve the operation of precision dosing systems for liquid products based on electro-pneumat-ic complexes.
  • Ескіз
    Документ
    Practical aspects modeling of air conveying modes for small–piece food products
    (2020) Kryvoplias-Volodina, Liudmyla; Gavva, Oleksandr M.; Yakymchuk, Nikolai; Derenivska, Anastasiia; Hnativ, Taras; Valiulin, Hennadii
    A mathematical and physical model of the critical pneumatic conveying modes has been developed to ensure the calculation and construction of pneumatic product pipelines of continuous operation. The model takes into consideration the technological conditions of gas suspension movement; the laws of movement of individual fine particles, accounting for their impact interaction and decompression, as well as the actual boundary conditions for a food product movement. The parameters of the zone of dynamic destruction of the layer of a small-piece food product by impact airwave were experimentally studied; the results of the calculation have been compared with the experimental data. The process of managing critical pneumatic conveying modes has been theoretically described, based on the proportional elements and feedback (a current loop of 4‒20 mA); the process of destruction of the cluster of products by airwave and controlled decompression has been studied. The process of pneumatic conveying of a small-piece product at the experimental bench system has been examined. As well as the process of moving the material in the product pipeline, which is controlled by compressed air pulses, to maintain the modes of operation. The following has been established: pressure losses caused by the movement of clean air; additional pressure losses resulting from the movement of the material; the loss of pressure required for transporting in a suspended state on a vertical stretch. A model has been developed to calculate the coordinates of a product particle when it collides with the inner surface of the product pipeline, as well as a change in its kinematic characteristics. The developed model makes it possible to determine the rational modes of pneumatic conveying and possible energy costs in the processing of various small-piece materials. The rational pneumatic conveying regimes have been determined, as well as possible energy costs in the processing of small-piece materials. As the time of supplying compressed air in the product pipeline increases, the number of product particles reaches a maximum in the range of 0.1...0.2 s. The compressed air flow rate, depending on the value of inlet mainline pressure P (0.1…0.3 MPa), is 80…160 (Nl/min). A general approach to the modeling of pneumatic conveying systems has been proposed