Осесимметричная задача теории упругости для пространства с коническим разрезом
Файли
Дата
1985
Автори
ORCID
DOI
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
Осесимметричная задача теории упругости решается для пространства с коническим сечением, в том числе и для вершины конуса. Точное решение для бесконечного конуса в пространстве с коническими покровом, как интегралы Меллина, постигаются в качестве исходного отношения. Задача сводится к системе Фредгольма интегро-дифференциальных уравнений с двумя неизвестными функциями, выполняя граничные условия. Формулы представлены для определения коэффициентов интенсивности напряжений и локальных полей напряжений и перемаещений вблизи границы круга конического раздела расследования.
An axisymmetric problem of the elasticity theory is solved for a space with a conical section including a cone vertex. Exact solution for an infinite cone and space with a conical nappe as the Mellin integrals are comprehended as starting relationships. The problem is reduced to the system of the Fredholm integro-differential equations with respect to two unknown functions by fulfilling boundary conditions. Formulas are presented for determining coefficients of the stress intensity and local fields of stresses and travels near a boundary circle of the conical section are investigate.
Опис
Ключові слова
коническая трещина, коэффициенты интенсивности напряжений, conical crack, stress intensity factor, кафедра вищої математики імені проф. Можара В. І.
Бібліографічний опис
Мартыненко, М. А. Осесимметричная задача теории упругости для пространства с коническим разрезом / М. А. Мартыненко // Доклады академии наук Украинской ССР. - 1985. - Серия А : Физ.-мат. и техн. науки. - № 5. - С. 35-40.