Development of the Algorithm of Determining the State of Evaporation Station Using Neural Networks

dc.contributor.authorLadanyuk, Anatoly
dc.contributor.authorKyshenko, Vasil
dc.contributor.authorShkolna, Olena
dc.contributor.authorSych, Maryna
dc.date.accessioned2016-11-11T08:27:29Z
dc.date.available2016-11-11T08:27:29Z
dc.date.issued2016
dc.description.abstractFor the rational use of thermal resources with the help of optimal control of evaporation station at a sugar factory, it is necessary to carry out the operation control of the states of evaporation station, which is determined based on the current assessments of technological parameters such as levels and temperature in cases of a station, juice and syrup consumption, thermophysical characteristics of vapor as well as the level of its consumption by technological plants of the factory. The algorithm of determining the state of evaporation station as a control object based on intelligent methods of clustering and classification was developed. The applied method of clustering based on the Kohonen self-organizing maps allowed defining a set of possible states of the object on the basis on information hidden in time series of technological parameters of evaporation stations. The application of the method of fuzzy classification allowed determining the state of evaporation station in the current moment based on the values of current parameters of evaporation station and the obtained set of possible states of an object. The developed algorithm of determining the state of evaporation station as a control object is expedient to use in automated control systems with the purpose of operational determining the state of control object in order to make timely decisions on optimal control of evaporation station.uk_UA
dc.identifier.citationDevelopment of the Algorithm of Determining the State of Evaporation Station Using Neural Networks / A. Ladanyuk, V. Kyshenko, O. Shkolna, M. Sych // Eastern-European Journal of Enterprise Technologies. – 2016. – Vol. 5, № 2 (83). – P. 54-62.uk_UA
dc.identifier.urihttps://dspace.nuft.edu.ua/handle/123456789/24530
dc.subjectevaporation stationuk_UA
dc.subjectneural networksuk_UA
dc.subjectthe Kohonen self-organizing mapsuk_UA
dc.subjectclusteringuk_UA
dc.subjectclassificationuk_UA
dc.subjectвипарна установкаuk_UA
dc.subjectнейронні мережіuk_UA
dc.subjectкластеризаціяuk_UA
dc.subjectкласифікаціяuk_UA
dc.subjectнейронные сетиuk_UA
dc.subjectсамоорганизационные карты Кохоненаuk_UA
dc.subjectкластеризацияuk_UA
dc.subjectклассификацияuk_UA
dc.subjectкафедра автоматизації та комп'ютерних технологій систем управління ім. проф. А.П. Ладанюкаuk_UA
dc.titleDevelopment of the Algorithm of Determining the State of Evaporation Station Using Neural Networksuk_UA
dc.typeArticleuk_UA

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
1.pdf
Розмір:
7.33 MB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис:

Колекції