Core ontology for describing production equipment according to intelligent production

Ескіз

Дата

2022

ORCID

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

This article presents the development of a core ontology for describing knowledge about the technological and technical parts of a production plant, in particular, theoretical knowledge for monitoring, diagnosing and forecasting of production equipment, taking into account the concept of Industry 4.0. This study is related to the definition of terms and their relationships for the processing industry in the core ontology. The core ontology is the basis for the development of domain and application ontologies, which create conditions for the system solution for the complex problems of operating industrial equipment. It consists of an ontological classification of core concepts according to the fundamental basic formal ontology. The essences of BFO were specified and revealed by methods of decomposition and generalization according to generally accepted structures of industrial enterprises. The proposed ontology contains 33 classes, 7 object properties and 34 individuals. The ontology is conceptually transparent and semantically clear, so it is suitable for theoretical knowledge transfer, sharing and retrieval. The ontology is implemented in the OWL language and validated. This article provides examples of requests for work with ontology, which prove the effectiveness of its use in industrial enterprises.

Опис

Ключові слова

ontology, smart manufacture, Industry 4.0, core, domain, failure, кафедра автоматизації та комп'ютерних технологій систем управління ім. проф. А.П. Ладанюка, домен, онтологія, розумне виробництво, Індустрія 4.0, ядро

Бібліографічний опис

Core ontology for describing production equipment according to intelligent production / L. Vlasenko, N. Lutska, N. Zaiets, I. Korobiichuk, S. Hrybkov // Applied System Innovation. – 2022. – Vol. 5, Is. 98. – Pp. 53–61

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced