Статті
Постійне посилання колекціїhttps://dspace.nuft.edu.ua/handle/123456789/7522
Переглянути
24 результатів
Результати пошуку
Документ Біотехнологічні особливості отримання органічних сполук, що використовуються у виробництві пластифікаторів(2023) Скроцька, Оксана Ігорівна; Цвєтков, Костянтин Олексійович; Пенчук, Юрій МиколайовичПластифікатори використовують при виробництві різних полімерів. Саме вони надають цим матеріалам гнучкості, міцності і еластичності. Для отримання пластифікаторів використовують різні групи сполук, зокрема – кислоти, феноли і спирти. Їх можна отримувати як хімічним синтезом, так і з використанням мікроорганізмів. У даній статті приділена увага саме мікробному синтезу різних сполук, які є основою при виробництві пластифікаторів. При виробництві пластифікаторів використовують органічні кислоти, такі як олеїнову, ліноленову, лінолеву, адипінову та ін. Серед продуцентів даних кислот виділяють бактерії родів Bifidobacterium, Lactobacillus; дріжджі Rhodosporidium, Saccharomyces, гриби Thamnidium, Mucor, а також мікроводорості Botryococcus, Botryococcus та ін. Другу групу сполук, які використовують при виробництві пластифікаторів складають феноли та їх похідні. Феноли можна отримати при культивуванні рекомбінантних штамів бактерій, зокрема Escherichia coli. Серед похідних фенолів для виробництва пластифікаторів використовують метакрезол. Його можна отримати з використанням генно-модифікованих клітин Saccharomyces cerevisiae та Aspergillus nidulans. Основною сировиною для виробництва пластифікаторів є спирти – гексанол, гліцерол, бутанол, ізобутанол. Гексанол синтезують як природні, так і рекомбінантні бактерії і дріжджі. Частка використання гексанолу у виробництві пластифікаторів становить 2,5 % від загального відсотка спиртів. Гліцерол менше використовують у виробництві пластифікаторів. Частка використання даного спирту – 1,8 %. Використання ізобутанолу у виробництві пластифікаторів складає 4,5 % від загальної кількості спиртів, що використовуються для цього. Даний спирт отримують при культивуванні рекомбінантних бактерій Escherichia coli, Corynebacterium glutamicum, Zymomonas mobilis та дріжджів Saccharomyces cerevisiae. Найбільший відсоток використання спиртів у створенні пластифікаторів займає бутанол – 36 %. Серед природніх продуцентів бутанолу виділяють бактерії роду Clostridium. Також сконструйовані рекомбінантні штами бактерій, які здатні синтезувати бутанол – Escherichia coli, Clostridium tyrobutyricum, Clostridium cellulovorans, а також дріжджі Saccharomyces cerevisiae.Документ Отримання біогенних наночасток срібла з використанням дріжджів та перспективи їх застосування у протимікробній терапії(2021) Харченко, Євген Іванович; Лазюка, Юлія Володимирівна; Скроцька, Оксана Ігорівна; Пенчук, Юрій МиколайовичНаноматеріали використовуються в багатьох галузях промисловості. При цьому існують різні способи їх отримання – хімічні, фізичні та біологічні. Саме біологічний метод синтезу наночасток, що передбачає використання клітин рослин, бактерій, грибів та дріжджів є екологічно чистим та економічно вигідним, оскільки при даному способі синтезу відпадає необхідність у використанні токсичних та дорогих матеріалів. Вказаний метод дозволяє отримувати наночастки з різною формою та розмірами, що досягається різними умовами, такими як зміна температури, pH, часу культивування тощо. Також, на відміну від наночасток, отриманих хімічним чи фізичним методом, біогенні наночастки містять на поверхні біомолекули, що робить їх біосумісними і дозволяє використовувати у медицині та суміжних галузях. Наночастки, що синтезовані з використанням мікроорганізмів, проявляють ряд біологічних властивостей – антибактеріальну, протигрибкову, антивірусну та протиракову активність. Серед наночасток металів особливу увагу приділяють наночасткам срібла, які мають антимікробну дію щодо стійких до антибіотиків штамів бактерій, а також показали противірусну активність, зокрема при лікуванні коронавірусної інфекції. Що стосується механізму дії наночасток срібла є літературні дані, що вказують на принципово різні шляхи їх біологічної дії. Найбільш поширений механізм протибактеріальної дії – безпосередня взаємодія наночасток з пептидогліканом і порушення структури клітинної стінки, що призводить до руйнування клітини. Найбільш ймовірним механізмом противірусної дії наночастинок є блокування етапів прикріплення вірусу до чутливих клітин. У статті наведено інформацію щодо можливості використання наночасток срібла при лікуванні коронавірусної інфекції та здійснено аналіз препаратів, що містять наночастки срібла і реалізуються на території України. Показані різні варіанти синтезу наночасток срібла з використанням дріжджів роду Saccharomyces, Candida, Cryptococcus, Rhodotorula, Yarrowia. Наведено форму та розмір, а також біологічну дію даних наночасток. Наведені розрахунки, що стосуються виробництва наночасток срібла з використанням Saccharomyces cerevisiae. Описано різні механізми антимікробної дії наночасток.Документ Одержання підсолоджувачів мікробним синтезом(2019) Гайдук, Юлія Миколаївна; Пенчук, Юрій МиколайовичВибір найбільш активного мікроорганізму, більш дешевого субстрату, забезпечення оптимальних умов культивування та інші технологічні особливості впливають на одержання підсолоджувачів. У статті проаналізовано сучасну наукову літературу останніх двох-п ’яти років щодо підвищення синтезу підсолоджувачів шляхом біотрансформації на різних субстратах з використанням бактерій і дріжджів. Біоконверсія за допомогою мікроорганізмів вважається альтернативою великомасштабному комерційному хімічному процесу. Забезпечення технологічних параметрів, зокрема температури як під час накопичення біомаси, так і під час виробничого біосинтезу, швидкості обертів мішалки, створення аеробних або анаеробних умов, знаходження найбільш активно штаму-продуцента дає змогу збільшити концентрації підсолоджувачів. Здійснено огляд досліджень зарубіжних вчених, які передбачать реалізацію біотехнологічного одержання підсолоджувачів. Проаналізовано особливості високопродуктивного одержання цукрозамінників — ксилітолу, сорбі- толу, еритритолу, манітолу та D-тагатози. Одержання підсолоджувачів здійснюється з використанням різних мікроорганізмів: Y. lipolytica, G. thailandicus, C. tropicalis, L. plantarum, L. brevis тощо. На сьогодні вчені зосередженні на знаходженні найбільш дешевого субстрату для культивування продуцентів. Для одержання еритритолу найбільш економічно доцільний виявився субстрат гліцерину, для манітолу — сахаризований артишок, D-тагатози — лактоза. Актуальним залишається знаходження субстратів для ксилітолу та сорбітолу, оскільки ці підсолоджувачі одержують на більш дорожчому субстраті — глюкозі, фруктозі. Наведено основні технологічні параметри, які впливають на високопродуктивне одержання підсолоджувачів. The choice of the most active microorganism, the choice of a cheaper substrate, the provision of optimal cultivation conditions and other technological features affect the obtaining sweeteners. The paper analyzes the modern scientific literature of the last five years concerning the increase of the synthesis of sweeteners by biotransformation, on different substrates, using bacteria and yeast. In addition, bioconversion with microorganisms is considered to be an alternative to a large- scale commercial chemical process. Providing technological parameters such as temperature, both during the accumulation of biomass and during production biosynthesis, the speed of rotation agitator, the creation of aerobic or anaerobic conditions, finding the most active strain of the producer allow to increase the concentration of sweeteners. The review of foreign scientific works, which provide the implementation of biotechnological obtaining sweeteners, has been carried out. The peculiarities of using sweeteteners — xylitol, sorbitol, erythritol, mannitol and D- tagatose were analyzed. Obtaining sweeteners is carried out using various microorganisms: Y. lipolytica, G. thailandicus, C. tropicalis, L. plantarum, L. brevis etc. Today scientists are focusing on finding the cheapest substrate for cultivating producers. To obtain erythritol, the most economically feasible was substrate — glycerin, for mannitol — artichoke tubers, for D-tagatose — lactose. Nonetheless finding substrates for xylitol and sorbitol remains relevant, as these sweeteners are received using a more expensive substrate — glucose, fructose. Therefore, the paper presents main technological parameters that influence the high-yielding obtaining sweeteners.Документ Нетрадиційні продуценти поверхнево-активних речовин(2019) Пирог, Тетяна Павлівна; Мартинюк, Анна Олександрівна; Пенчук, Юрій Миколайович; Мучник, Фаїна ВолодимирівнаНині поверхнево-активні речовини (ПАР) мікробного походження через ряд переваг (низька токсичність, біодеградабельність, стабільність у широкому діапазоні рН і температури) є конкурентоспроможними на ринку хімічних сполук. Такі переваги, а також унікальні біологічні властивості (антимікробна та антиадгезивна активність, здатність до руйнування біоплівок) роблять їх потенційними для використання у харчовій, фармацевтичній промисловості, сільському господарстві та медицині. Дотепер більшість продуцентів мікробних ПАР (зокрема трегалозо- і рамноліпідів) була ізольована із забруднених ксенобіотиками (здебільшого нафта чи інші вуглеводні) екосистем. Проте останніми роками істотно підвищився інтерес до нетрадиційних продуцентів біологічно активних речовин, які під час виживання в специфічних, часто наближених до екстремальних, місцях існування синтезують метаболіти з унікальними властивостями. Так, ізольовані із засолених грунтів чи морських екосистем мікроорганізми синтезують ПАР, фізикохімічні властивості яких (поверхневий і міжфазний натяг, індекс емульгування) є стабільними у широкому діапазоні концентрацій натрій хлориду (до 10—30%), температури (4—100°С) і рН (2—12). Сукупність цих властивостей дає змогу розглядати такі поверхнево-активні речовини як перспективні для біоремедації морських акваторій та засолених грунтів від ксенобіотиків. Крім здатності до емульгування та солюбілізаціїрізних вуглеводнів, поверхнево-активним речовинам, синтезованим нетрадиційними продуцентами, які виділені з незабруднених ксенобіотиками грунтів, рослин і рослинних залишків, морських екосистем, притаманна також антимікробна, антиадгезивна й антиоксидантна активність, а також здатність до руйнування біоплівок патогенних мікроорганізмів. Більшість нетрадиційних продуцентів ПАР потребують високовартісних поживних середовищ з вуглеводними джерелами вуглецю і синтезують цільовий продукт у значно нижчих концентраціях порівняно з традиційними. Тому актуальною проблемою сьогодення є розробка високоефективних технологій їх біосинтезу, одним з шляхів вирішення якої може бути використання промислових відходів як субстратів для одержання цих продуктів мікробного синтезу. Now surfactants of microbial origin through a number of advantages (low toxicity, biodegradability, stability in a wide range of pH and temperature) are competitive at the market for chemical compounds. Such advantages, as well as unique biological properties (antimicrobial and anti-adhesive activity, ability to destroy biofilms) make them potential for use in food, pharmaceutical industry, agriculture and medicine. Until recent time, most producers of microbial surfactants (in particular, trehalose- and rhamnolipids) were isolated from ecosystems contaminated with xenobiotics (mainly oil and other hydrocarbons). However, in recent years, interest in non-traditional producers of biologically active substances has significantly increased, which surviving in specific, often close to extreme, habitats, synthesize metabolites with unique properties. So, microorganisms isolated from saline soils or marine ecosystems synthesize surfactants, which physicochemical properties (surface and interfacial tension, emulsification index) are stable over a wide range of sodium chloride concentrations (up to 10— 30%), temperature (4— 100°С) and pH (2— 12). The combination of these properties allows to consider such surfactants as promising for the bioremediation of marine areas and saline soil from xenobiotics. In addition to the ability to emulsify and solubilize various hydrocarbons, surfactants, synthesized by non-traditional producers, isolated from soil not contaminated by xenobiotics, plants and plant residues, marine ecosystems, also characterized by antimicrobial, anti-adhesive and antioxidant activity, as well as the ability to destroy biofilms of pathogenic microorganisms. However, nowadays most of non-traditional producers of surfactants require expensive nutrient media with carbohydrates as carbon sources and synthesize the final product in much lower concentrations than traditional ones. Therefore, an urgent problem is the development of highly efficient technologies for their biosynthesis, one of the ways to solve which could be the use of industrial waste as substrates for the production of these microbial synthesis products.Документ Інтенсифікація синтезу практично важливих мікробних метаболітів на суміші субстратів(2018) Пирог, Тетяна Павлівна; Гершман, Артем; Пенчук, Юрій МиколайовичУ статті проаналізовано сучасну наукову літературу останніх двохп ’яти років щодо підвищення синтезу на змішаних субстратах (у тому числі й промислових відходах) первинних (органічні кислоти, ліпіди, ферменти), вторинних (полігідроксиалканоати, полісахариди, поверхнево-активні речовини) метаболітів, а також біоетанолу і біоводню. Використання суміші субстратів у мікробних технологіях дає змогу збільшити показники синтезу практично цінних метаболітів у 1,5— 10 разів порівняно з вирощуванням продуцентів на відповідних моносубстратах, а також у деяких випадках навіть регулювати склад і властивості цільового продукту.Документ Препарати фактора некрозу пухлин: характеристика, способи отримання та модифікації(2017) Харченко, Євген Віталійович; Скроцька, Оксана Ігорівна; Пенчук, Юрій Миколайович; Боднар, Оксана ВалентинівнаУ статті узагальнено дані про біологічні властивості фактора некрозу пухлин (ФНП) і препаратів на його основі, які застосовують у лікарській практиці для боротьби з раковими захворюваннями. Охарактеризовано препарати для наукових досліджень на основі рекомбінантного ФНП. Наведено коротку інформацію про можливості отримання ФНП за допомогою одноклітинних про- (Escherichia coli) та еукаріот (Saccharomyces cerevisiae, Pichia pastoris). Описано індуктори синтезу ФНП (бактеріальні ліпополісаха- риди, фітогемаглютенін, антигени різних організмів), які використовують при культивуванні імунокомпетентних тваринних або людських моно- нуклеарних клітин. Визначено можливості модифікації ФНП для покращення його біологічних властивостей, підвищення активності та зменшення токсичності, створення нанокомпозитів ФНП з антибіотиками, фрагментами антитіл, наночастками металів, а також недоліки використання поліети- ленгліколю для модифікації ФНП. The paper presents data about the biological properties of the tumor necrosis factor (TNF) and drugs based on it, which are used in medical practice to combat cancer. The preparates for scientific research based on recombinant TNF have also been described. The brief information about the possibilities of obtaining TNF using unicellular pro- (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae, Pichia pastoris) is given. The TNF synthesis inducers (bacterial lipopolysaccha- rides, phytohemaglutenin, antigens of various organisms) that are used in the cultivation of immunocompetent animals or human mononuclear cells are characterized. The possibilities of TNF modification to improve its biological properties, increase activity and reduce toxicity, create TNF nanocomposites with antibiotics, antibody fragments, and metal nanoparticles, disadvantages of the use of polyethylene glycol for modification of TNF have also been presented.Документ Розмаїття мікробних вторинних метаболітів(2018) Кондрашевська, К. Р.; Ключка, Ігор Вікторович; Пирог, Тетяна Павлівна; Пенчук, Юрій МиколайовичУ статті наведено сучасні літературні дані щодо синтезу мікробних вторинних метаболітів епіфітними, вільноіснуючими (в тому числі й морськими) бактеріями (представниками родин Bacillaceae та Paenibacillaceae), актинобактеріями родини Streptomycetaceae та Micromonosporaceae, грибами родини Trichocomaceae (роди Talaromyces, Aspergillus, Penicillium). Завдяки широкому спектру біологічної активності (антибактеріальна, антифунгальна, противірусна та цитотоксична) вони можуть бути використані як альтернативні хімічним сполукам у медицині, а також у сільському господарстві для контролю чисельності фітопатогенних мікроорганізмів.The article presents modern literature data on the synthesis of microbial secondary metabolites by epiphytic, free-living (including marine) bacteria (members of the families Bacillaceae and Paenibacillaceae), actinobacteria of the family Streptomycetaceae and Micromonosporacelaeae, Grymonacomporaceaee, Hrymoniacomaceliae, Due to a wide range of biological activity (antibacterial, antifungal, antiviral and cytotoxic), they can be used as alternatives to chemical compounds in medicine, as well as in agriculture to control the number of phytopathogenic microorganisms.Документ Технологічні аспекти одержання пробіотиків(2014) Старовойтова, Світлана Олександрівна; Скроцька, Оксана Ігорівна; Пенчук, Юрій Миколайович; Дорошко, Юлія МиколаївнаУ статті розглянуто сучасні аспекти одержання пробіотичних препаратів. Підкреслено, що підвищення ефективності вітчизняного виробництва пробіотиків є актуальним завданням, для вирішення якого необхідна розробка елементів технологічної уніфікації. Основні стадії отримання пробіотичних препаратів, що пов’язані з накопиченням мікробної біомаси та її стабілізацією, є об’єктами інтенсивних досліджень. Розробка й практичне застосування однотипових поживних середовищ для культивування виробничих штамів бактерій і захисних середовищ для ліофілізації препаратів відображають сучасний рівень уніфікації технології пробіотиків. Modern aspects of preparing pro-biotic agents are considered in this study. Increasing the efficiency of a domestic production of probiotics is an actual task which requires developing the technological unification. The main stages of preparing the pro-biotic preparations involving the accumulation of microbic biomass and its stabilization are the objects of constant study. Development and practical application of the same nutrient mediums for cultivation of production strains of bacteria and protective environments for a liofilization of preparations reflect modern level of unification of technology of preparing probioticsДокумент Підбір оптимального складу поживного середовища та умов культивування Aspergillus sp. 262 – продуцента ферментів целюлолітичного комплексу(2013) Лапська, Ю. Ю.; Омельчук, Євген Олександрович; Пенчук, Юрій МиколайовичНа основі отриманих експериментальних даних визначено джерела вуглецю, азоту і фосфору та підібрано умови культивування Aspergillus sp. 262 – продуцента целюлолітичних ферментів. Визначено, що у разі використання бурякового жому, CO(NH2)2 та Na2HPO4 • 12H2О, як компонентів поживного середовища, відбувається максимальний біосинтез комплексу целюлолітичних ферментів. Встановлено оптимальні умови культивування продуцента такі як: вплив температури, інтенсивності аерації, об’єму поживного середовища, тривалості культивування та відсоток посівного матеріалу на біосинтез целюлаз штамом Aspergillus sp. 262 для отримання максимального біосинтез комплексу ферментів.Документ Індукція інтерферонів I типу в умовах in vitro за допомогою іммобілізованого комплексного інтерфероногену(2003) Карпов, Олександр Вікторович; Верьовк, Сергій Вікторович; Манджос, О. П.; Пенчук, Юрій Миколайович; Поводзинський, Вадим Миколайович; Жолобак, Надія Михайлівна; Співак, Микола Якович; Кисельова, О. К.У лабораторних експериментах ми показали Інтерфероногенну активність молекулярної конструкції, що складається з одноланцюгової РНК дріжджів, ковалентно зв'язаної з нерозчинним носієм Тилорон. Отримані результати підтверджують припущення щодо механізму індукції інтерферонів І типу в тому числі, на першому її етапі, контакт дволанцюгового рібополінукліотіду з клітинною мембраною без проникнення в клітину. Ці конструкції можуть бути використані для великомасштабної продукції інтерферону. In vitro experiments, we have shown the interferonogenic activity of molecular constructions consisting of single-stranded yeast RNA covalently bound to an insoluble carrier and tilbrone. The results obtained confirm the presumption concerning the induction mechanism of interferons of type I including, at its first stage, the contact a double-stranded ribopolynucleotide with a cell membrane without penetration into the cell. These constructions seem to be promising for the large-scale interferon production.
- «
- 1 (current)
- 2
- 3
- »