Статті
Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372
Переглянути
5 результатів
Результати пошуку
Документ Determining the influence of plant-based proteins on the characteristics of dairy ice cream(2024) Mykhalevych, Artur; Polishchuk, Galyna; Bandura (Kuzmyk), Uliana; Osmak (Fedchenko), Tetiana; Bass, OksanaThis paper investigates the functional and technolog-ical properties of proteins in the composition of dairy ice cream. The object of the research was the technology of ice cream with plant-based proteins. The problem to be solved was the improvement of physical-chemical and rheolog-ical characteristics of mixtures and ice cream with a low fat content by using moisture-binding structuring proteins of plant originДокумент Effects of protein and carbohydrate ingredients on colour of baked milk products(2024) Mandiuk, Olena; Lohinova, Anna; Arsenieva, Larisa; Petrusha, Oksana; Polishchuk, GalynaIn the CIE Lab system, only the coordinates “a” and “b” should be used to characterize the color change of milk of 2.5% fat and cream of 10% fat during heat treatment at 95–97 ⁰C for 160–180 min, as the L indicator (light level) is not sufficiently informative. According to the selected coordinates, rational ranges were established as a criterion for the completeness of the Maillard reaction for baked milk and cream, in particular for coordinate “a” in the range from 1.5 to 2.0 units, for coordinate “b” from 11.5 to 13.0 units. The application of whey protein concentrate, hydrolysed demineralized whey concentrate, and glucose-fructose syrup, which contain monosaccharides and proteins, significantly enhanced the Maillard reaction. The recommended values for color coordinates of cream with milk protein and carbohydrate ingredients were achieved during the simmering process. For cream with whey protein concentrate, this occurs at a minimum of 21 min; for cream with hydrolysed whey concentrate at a minimum of 28 min, and for cream with glucose-fructose syrup and whey protein concentrate at a minimum of 18 min. The samples with whey protein concentrate and glucose-fructose syrup, including those one with whey protein concentrate, showed an excellent level of quality in terms of sensory characteristics after 20 min, while the sample with hydrolysed whey concentrate demonstrated this after 30 min of simmering. These results correlated with the rational duration of cream simmering to achieve the recommended degree of color. A slight decrease in acidity was observed in all cream samples during the heating process. The reduction in the duration of the simmering process of dairy products with simultaneous achievement of recommended color characteristics will contribute to a significant reduction in heat energy consumptionДокумент Influence of starch products on the vitality and activity of lactic acid bacteria in yogurt(2024) Ivashchenko, Olga; Khonkiv, Myroslav; Stabnikov, Victor; Polishchuk, Galyna; Marynin, Andriy; Buniowska-Olejnik, MagdalenaThe influence of starch product with different dextrose equivalents addition on the viability and activity of lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus during fermentation and storage of yogurt has been studied. An increase of dextrose equivalent and monosaccharides content in starch products reduce the fermentation time of milk due to the increase of lactic acid bacteria activity. A slight decrease in water activity in the presence of glucose-fructose syrup in yogurt in an amount of 9% had virtually no effect on the milk fermentation process. The number of lactic acid bacteria increased during the first seven days of yogurt storage added with glucose-fructose syrup. On the 14th day of storage, the concentration of cells of S. thermophilus and L. delbrueckii ssp. bulgaricus became almost the same in all yogurts due to almost complete consumption of carbon sources. When the storage of yogurt was extended to 28 days, the most stable content of lactic acid bacteria was found in yogurt added with maltodextrin due to its prebiotic properties. The increases of active acidity and syneresis in all yogurts were greatest in the first 8–14 days. Presence of dextrins in yogurt stabilizes its physical and chemical properties during storageДокумент The influence of whey protein isolate on the quality indicators of acidophilic ice cream based on liquid concentrates of demineralized whey(2024) Mykhalevych, Artur; Buniowska-Olejnik, Magdalena; Polishchuk, Galyna; Puchalski, Czesław; Kaminska-Dwórznicka, Anna; Berthold-Pluta, AnnaThe use of liquid whey concentrates in the composition of ice cream, especially in combination with other powdered whey proteins, is limited due to their understudied properties. This article shows the main rheological and thermophysical characteristics of ice cream mixes, as well as color parameters, microstructure, analysis of ice crystals and quality indicators of ice cream during storage. The most significant freezing of free water (p ≤ 0.05) was observed in the temperature range from the cryoscopic temperature to −10 ◦C. The microscopy of experimental ice cream samples based on hydrolyzed whey concentrates indicates the formation of a homogeneous crystalline structure of ice crystals with an average diameter of 13.75–14.75 µm. Microstructural analysis confirms the expediency of using whey protein isolate in ice cream, which ensures uniform distribution of air bubbles in the product and sufficient overrun (71.98–76.55%). The combination of non-hydrolyzed whey concentrate and 3% whey protein isolate provides the highest stability to preserve the purity and color intensity of the ice cream during storage. The produced ice cream can be classified as probiotic (number of Lactobacillus acidophilus not lower than 6.2 log CFU/g) and protein-enriched (protein supply from 15.02–18.59%).Документ Influence of plant-based structuring ingredients on physicochemical properties of whey ice creams(2024) Tomczynska-Mleko, Marta; Mykhalevych, Artur; Sapiga, Victoria; Polishchuk, Galyna; Terpiłowski, Konrad; Mleko, Stanislaw; Sołowiej, Bartosz; Pérez-Huertas, SalvadorThe dairy industry is actively seeking newapplications for various types ofwhey. One promising direction is the development of nutritious ice cream, using a blend of different whey proteins. However, the production of whey ice cream is hindered by the occurrence of quality issues, primarily stemming froma low content of solids, particularly fat and protein. The development of natural components with distinctive technological attributes, such as the ability to bind excessmoisture, enhance foaming properties, and replicate the taste of milk fat, is of significant relevance in food science. In this work, we investigated the influence of plant-based structuring ingredients on the viscoelastic characteristics of whey-based ice creams. Notably,mixes such as 0.4% Vianoks C45 + 0.75% oat β-glucan, 0.4% Vianoks C45 + 0.5% yeast β-glucan, and 0.4% Vianoks C45 + 3% whey protein complex + 10% vegetable purée from table beet have been proven to be effective stabilizing compositions. However, attempts to combine the whey protein complexwith other types of vegetable purées like zucchini and broccoli did not yield satisfactory results. It has also been found that β-glucan from the yeast Saccharomyces cerevisiae and κ-carrageenan, a component of the Vianoks C45 stabilization system, forms a robust gel within the system. Analysis of the aqueous phase in whey-based ice creams revealed a consistent correlation between water activity, surface tension, and rheological behavior. Finally, the ice creams that exhibited the best viscoelastic characteristics also had the best sensory attributes.