Перегляд за Автор "Слюсенко, Андрій Михайлович"
Зараз показуємо 1 - 14 з 14
- Результатів на сторінці
- Налаштування сортування
Документ 3D-Візуалізація і рендеринг пляшкок в Autodesk Inventor professional(2023) Слюсенко, Андрій МихайловичДокумент Апарат попереднього підігріву (Патент на корисну модель № 139236)(2019-12-26) Лементар, Святослав Юрійович; Пономаренко, Віталій Васильович; Якобчук, Роман Леонідович; Слюсенко, Андрій Михайлович; Ніколишак, Максим ВолодимировичАпарат попереднього підігріву містить корпус, живильник, камеру розподілу теплоносія, патрубок додаткової подачі теплоносія, транспортуючий пристрій, патрубок вивантаження паростків, патрубок вивантаження солоду, патрубок виходу відпрацьованого теплоносія та решітку. Камера розподілу теплоносія виконана розділеною на три однакові секції з додатково встановленими патрубками подачі теплоносія в кожній секції. The preheating apparatus comprises a housing, a feeder, a coolant distribution chamber, an additional coolant supply pipe, a transport device, a sprout unloading pipe, a malt unloading pipe, a spent coolant outlet pipe and a grate. The coolant distribution chamber is made divided into three identical sections with additionally installed coolant supply pipes in each section.Документ Вплив фізичних властивостей рідин на роботу рідинно-газових ежекторів(2019) Пономаренко, Віталій Васильович; Пушанко, Микола Миколайович; Слюсенко, Андрій Михайлович; Єщенко, Оксана АнатоліївнаУ класичних струминних апаратах як активне сопло в основному використовується струминна форсунка з компактним струменем рідини, а взаємоді фаз у приймальній камері відбувається лише із зовнішньою поверхнею факела розпилення з подальшим вирівнюванням характеристик у камері змішування. При використанні струминних апаратів для здійснення тепломасообмінних процесів, що характерно для харчової промисловості, більш доцільно використовувати активне сопло у вигляді відцентрово струминної форсунки з диспергованим струменем рідини. Внаслідок появи поздовжніх і поперечних хвиль струмінь рідини розпадається на краплі на незначній відстані від сопла. Поверхня контакту фаз значно збільшується і процеси масопередачі прискорюються багатократно. З урахуванням того, що в цей період мають місце кавітаційні явища, кінцеві ефекти, формування поверхні крапель та її переформатування при співударах, то робота ежекторів вкрай ефективна при проведенні в них технологічних процесів. Виходячи з оцінки рівня знань процесів і фізичних явищ, що відбуваються в струминних апаратах, з метою створення обладнання з високими експлуатаційними характеристиками в дослідженні розглядається вплив лише двох факторів на роботу ежекторів: тип активного сопла і фізичні властивості рідини, що диспергується. Для встановлення особливостей гідродинаміки емульсії в камері змішу вання струминних апаратів був створений гідравлічний стенд, на якому досліджувався ежектор з прозорими камерами змішування діаметрами 8,15, 19, 27, 45 мм та струминною і відцентрово-струминною форсункою як робочого сопла з діаметрами сопел 4, 6, 8 мм. Встановлено залежність коефіцієнта ежекції від типу розпилювача й тиску. Досліджено роботу рідинно-газового ежектора з диспергованим струменем рідини на модельних цукрових і крохмальних розчинах концентрацією 12%, 16,6% та встановлено вплив фізичних властивостей рідини на роботу ежектора. При малих тисках подачі рідини на сопло форсунки (до 0,25 МПа) коефі цієнт ежекції залежить від властивостей рідини: збільшення концентрації розчинів приводить до зниження ежектуючої здатності. При збільшенні тиску, під яким відбувається розпилення рідини, вплив її фізичних власти востей на роботу ежектора зникає.Документ Дослідження впливу конструктивних елементів приймальної камери на експлуатаційні характеристики рідинно-газового ежектора(2020) Слюсенко, Андрій Михайлович; Пономаренко, Віталій Васильович; Лементар, Святослав Юрійович; Пушанко, Микола МиколайовичСтруминні апарати (ежектори) застосовуються в різних галузях промисло-вості для проведення як основних, так і допоміжних технологічних процесів, що пояснюється надійністю їх роботи та відносно низькою вартістю виготов-лення й технічного обслуговування. Основним недоліком такого обладнання є низький коефіцієнт корисної дії (ККД). При всій простоті конструкції досі так і не знайдено шляхів його істотного підвищення. Оскільки конструкція апарата достатньо проста, то роль кожного елемента, їх взаємне розташування та розміри мають важливе значення в підвищенні техніко-експлуатаційних характеристик. Однією з таких є коефіцієнт ежекції Kеж, який характеризує кіль-кість захопленої пасивної фази на одиницю активної. Цей показник стає визна-чальним при проведенні в струминних апаратах масообмінних процесів високої інтенсивності. Аналіз конструкцій ежекторів показує, що приймальна камера відіграє важ-ливу роль у роботі апарата та повинна забезпечувати при мінімальному гідравлічному опорі рівномірне підведення пасивного середовища до зовнішньої поверхні факела активного струменя рідини. Зазвичай, конструкція приймальної камери ежекторів циліндричної форми має один патрубок для підводу пасивного середовища. Робота такого ежектора характеризується недостатньою взаємодією між фазами, що не дає змоги досягти високого Kеж. Відповідно до цього у статті досліджено вплив елементів приймальної камери (конструкції камери, кількості підвідних патрубків пасивного середовища) на ефективність роботи ежектора. Для цього створено експериментальну установку, на якій досліджувалися класичний водо-повітряний струминний апарат з циліндричною камерою змішування і новий енергоефективний ежектор з комбінованою (конічно-циліндричною) камерою змішування та різними конструкціями приймальної камери. У результаті проведених досліджень встановлено вплив елементів приймальної камери на коефіцієнт ежекції струминних апаратів і сформовано рекомендації щодо її конструкційного виконання. Jet devices (ejectors) are used in various industries for carrying out both basic and auxiliary technological processes. It`s explained by their reliability of operation and the relatively low cost of manufacturing and maintenance. However, the main disadvantage of such equipment is its low coefficient of efficiency (COE). With all the simplicity of the design, no way has yet been found to significantly increase it. Since the design of the apparatus is quite simple, the role of each element, their relative posi-tion and size play an important role in improving the technical and operational characteristics. One of the main characteristics of ejectors is the ejection coefficient Kej, which characterizes the amount of captured passive phase per unit of active phase. This indicator becomes decisive when carrying out high-intensity mass transfer processes in jet devices. The analysis of the ejectorsʼ designs shows that the receiving chamber plays an important role in the operation of the apparatus. It should provide uniform supply of the passive medium to the outer surface on of the active liquid jet with minimal hydraulic resistance. Typically, the design of the receiving chamber of ejectors is cylindrical and has one branch pipe for supplying the passive medium. The operation of such an ejector is characterized by insufficient interaction between the phases, which does not allow achieving a high Kej. According to the above, the purpose of this work was to study the influence of the structural features of the elements of the receiving chamber (chamber design, the number of inlet pipes of the passive medium) on the ejector efficiency. To achieve this goal experimental device was created on which a classic water-air jet apparatus with a cylindrical mixing chamber and a new energy-efficient ejector with a combined finite-cylindrical mixing chamber and various designs of the receiving chamber were studied. As a result of the studies, the influence of the structural elements of the receiving chamber on the ejection coefficient of jet devices was established and recommendations for improving their design were formulated.Документ Дослідження процесу розпилення рідини за допомогою CFD-технологій(2022) Слюсенко, Андрій Михайлович; Пономаренко, Віталій Васильович; Блаженко, Сергій Іванович; Хитрий, Ярослав СергійовичУ газорідинних системах інтенсифікація процесів обміну маси або енергії можлива при створенні значної площі поверхні контакту фаз і швидкому її оновленні шляхом розпилення рідини гідравлічними форсунками. При встановленні їх в обладнання потрібно знати характеристики факела розпилення, що дає змогу забезпечити найбільш ефективну роботу. Такі дані отримують при експериментальному дослідженні форсунок, однак при зміні розмірів, їх співвідношень потрібні додаткові дослідження, які вимагають наявності експериментальних стендів, відповідного обладнання, є дорогими та потребують значного часу на їх проведення й обробку результатів.Найпотужнішою програмою для дослідження гідродинаміки потоків є система ANSYS з CFD модулями, завдяки якій можна дослідити структуру потоків у камері змішування форсунки, на виході з її сопла, передбачити явище розпилення та руйнування струменя рідини. Основним критерієм отримання достовірних результатів моделювання є коректне налаштування всіх розрахункових модулів програмного забезпечення. У статті визначено характеристики факела розпилення потоку у форсунці з використання CFD-технологій як прогресивного, високоефективного та економічно доцільного методу досліджень. Розроблено алгоритм проведення числового моделювання гідродинаміки потоку рідини у форсунці та на виході з її сопла, що складається із шести етапів. Отримані CFD-моделюванням числові значення розподілення швидкості та об’ємної частки рідини для факела розпилення корелюють з відомими експериментальними даними. Встановлено, що всередині факела створюється розрідження порядку 165 Па, причому воно максимальне у прикореневій зоні, знижується до периферії і при віддаленні від сопла. Зона пониженого тиску пояснює ежектування газової фази ззовні всередину факела розпилення.In gas-liquid systems, the intensification of mass or energy exchange processes is possible by creating a significant area of the contact surface of the phases and uickly updating it by spraying the liquid with hydraulic nozzles. When installing them in equipment, it is ecessary to know the characteristics of the spray jet in order to ensure the most efficient operation. Such data are obtained during the experimental study of injectors. However, when changing the sizes, their ratios, additional studies are required, which require the availability of experimental stands, appropriate equipment, which are expensive and require considerable time for their implementation and processing of the results. The most powerful program for the study of fluid dynamics of flows is the ANSYS system with CFD-modules. It is possible to investigate the structure of flows in the mixing chamber of the nozzle, at the outlet of nozzle, to foresee the phenomenon of spraying and destruction of the liquid jet. The main criterion for obtaining reliable simulation results is the correct setting of all calculation software modules. The aim of the work is to determine the characteristics of the spray jet in the nozzle using CFD technologies as a progressive, highly efficient and economically viable research method. An algorithm for numerical simulation of the hydrodynamics of the fluid flow in the nozzle and the exit from its nozzle was developed. It consists of six stages. Numerical values of velocity and volume fraction of liquid for the spray torch, obtained by CFD modeling, correlate with known experimental data. It is established that a zone of the lowpressure of about 165 Pa is created inside the torch of the sprayed liquid (maximum in the root zone, decreases to the periphery and at a distance from the nozzle). The low-pressure zone explains the ejection of the gas phase from the outside into the middle of the spray torch.Документ Кавітаційний ежектор (Патент на корисну модель № 152366)(2023) Слюсенко, Андрій Михайлович; Пономаренко, Віталій Васильович; Лементар, Святослав ЮрійовичДокумент Колонний дифузійний апарат (Патент на корисну модель № 154231)(2023) Люлька, Дмитро Миколайович; Пономаренко, Віталій Васильович; Слюсенко, Андрій Михайлович; Скопець, Владислав ВіталійовичДокумент Комбінований ступінчастий сатуратор для цукрової промисловості (Патент на корисну модель №153748)(2023) Тимченко, Іван Вячеславович; Пономаренко, Віталій Васильович; Слюсенко, Андрій Михайлович; Люлька, Дмитро Миколайович; Лементар, Святослав ЮрійовичДокумент Комп’ютерне моделювання руху потоків у рідинно-газовому струминному апараті(2022) Слюсенко, Андрій Михайлович; Пономаренко, Віталій Васильович; Люлька, Дмитро МиколайовичДля комп’ютерного моделювання руху потоків у струминному апараті (ежекторі) використано модуль гідрогазодинаміки CFX академічної версії програми ANSYS. При моделюванні розглядається двофазна система рідина-газ (вода-повітря). Для врахування турбулентності, яка виникає в потоці, прийнято k-ε модель турбулентності. Оскільки моделюється двофазна система, в якій відбувається передача маси та енергії між середовищами, то прийнято багатофазну модель Ейлера Mixture. Вхід активного і пасивного потоків в ежектор задано через масову витрату та тиск відповідно. В усіх дослідженнях розглядається вільний витік рідинно-газової суміші з камери змішування струминного апаратаДокумент Оптимізація конструкції вузлів підведення рідини в скрубер Вентурі на основі CFD досліджень(2024) Пономаренко, Віталій Васильович; Люлька, Дмитро Миколайович; Якобчук, Роман Леонідович; Слюсенко, Андрій Михайлович; Лементар, Святослав Юрійович; Хитрий, Ярослав Сергійович; Тимченко, Іван В'ячеславовичУ процесах харчової промисловості, повʼязаних із сушінням, подрібнення тощо, утворюється пил, що створює проблеми санітарного, екологічного й технологічного характеру (негативний вплив на здоровʼя людини, забруднення навколишнього середовища та втрата цінної сировини із пилом). Вирішення цих проблем залежить від комплексного вдосконалення роботи пилоочисного обладнання. Одним з основних та ефективних елементів такого обладнання є скрубер Вентурі. Метою дослідження є визначення раціональної конструкції форсунок для осьового розподілення рідини на вході в скрубер і периферійного її підводу через отвори в горловині для забезпечення мінімальної та достатньої густини зрошення. Це дасть змогу максимально змочити пилові частинки та в подальшому їх видалити. Для досягнення поставленої мети використано методи обчислювальної гідродинаміки (CFD), реалізовані в програмному пакеті ANSYS CFX. Досліджено роботу форсунок трьох типів: струминної, відцентрово-струминної та відцентрової. Розроблено їх тривимірні моделі і згідно із загальноприйнятим алгоритмом досліджень приведено методику налаштування модулів програми для реалізації цього завдання. Особливості налаштування модулів при дослідженні скруберів з різним конструктивним виконанням вузлів підводу рідини описані при вирішенні задачі раціонального конструктивного виконання вузлів підводу рідини в скрубер. Отримані результати числових розрахунків дали змогу вибрати відцентрово-струминні форсунки, розміщені по осі скрубера для зрошення його горловини, як ефективний варіант. Рівномірний розподіл рідини по поперечному перерізу та по довжині можливий для зменшення витрати рідини вдвічі. Дослідження конструктивного виконання периферійного підведення рідини показали, що виконання підвідних отворів посередині горловини не є раціональним, оскільки вздовж вхідних кромок горловини виникають зони вихрових течій, а вирівнювання концентрації рідини відбувається на її виході. Більш раціональним варіантом периферійного підведення рідини є її підведення через отвори, що виконані в горловині на відстані 0,1…0,2 від її початку.Документ Проектування корбонізаторів цукрових розчинів з використанням імітаційного моделювання процесу розпилення(2023) Скопець, Владислав Віталійович; Пономаренко, Віталій Васильович; Слюсенко, Андрій МихайловичДокумент Розрахунок робочих характеристик ежектора з конічно-циліндричною камерою змішування(2023) Тимченко, Іван Вячеславович; Слюсенко, Андрій Михайлович; Пономаренко, Віталій ВасильовичДокумент Струминний апарат з кавітаційним ефектом(2021) Слюсенко, Андрій Михайлович; Пономаренко, Віталій Васильович; Люлька, Дмитро МиколайовичЗначна кількість процесів в харчовій, хімічній, фармацевтичній і інших галузях промисловості пов’язані з процесами тепломасообміну в газорідинних системах. Відомі різноманітні способи впливу на технологічні середовища з метою інтенсифікації цих процесів. Нами пропонується гідродинамічний спосіб, як простий та економний, який реалізується в рідинно-газових струминних апаратах (ежекторах). Завдяки простоті конструкції, незначним розмірам, відсутності рухомих елементів та можливості ежекції газу без додаткових затрат енергії такі апарати знаходять все більше використання для проведення процесів сульфітації, сатурації, пастеризації, насичення напоїв діоксидом вуглецюДокумент Трьохступеневий карбонізатор цукрового соку(2023) Тимченко, Іван Вячеславович; Пономаренко, Віталій Васильович; Слюсенко, Андрій Михайлович